○メタルクリア®とは

天然鉱物ドロマイト【CaMg(CO₃)₂】※を出発原料とする無機系不溶化剤 ※石灰石中のCaの一部がMgと置換された鉱物

Oメタルクリア®の特徴

有機系材料と比べ長期安定性に優れ、環境負荷低減に有効

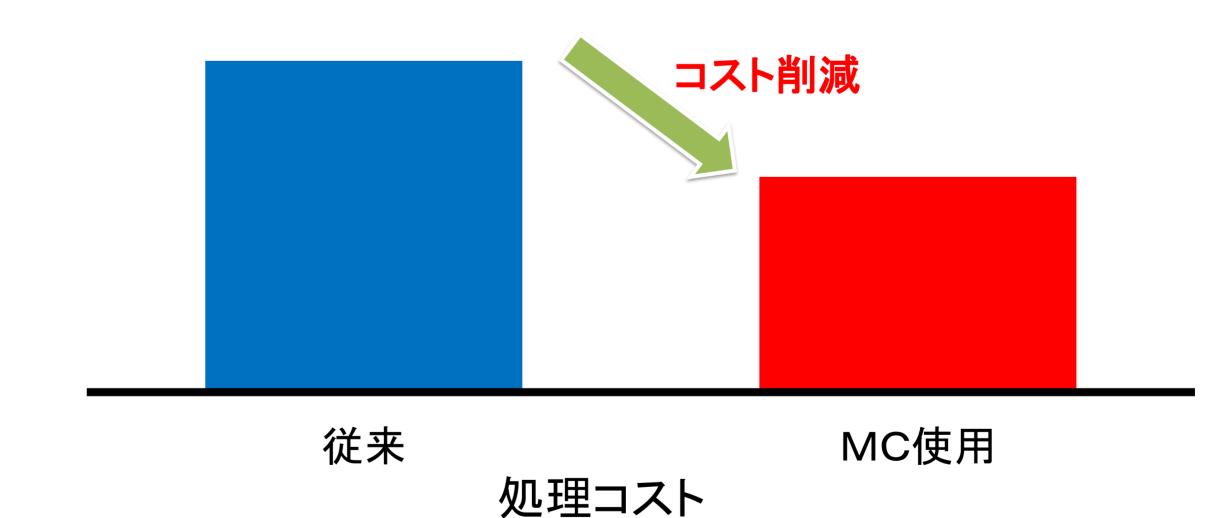
Oメタルクリア®シリーズ

	主成分	製品外観	特長	材料pH[-]
メタルクリア® -1000	MgO+CaCO ₃ (半焼成ドロマイト)	粉末状 粒状 (カラム充填剤)	<u>廃水、土壌</u> 向けの不溶化処理剤 (Pb, As, F, Se, B, Zn, Cd, P)	10~12
メタルクリア® -2000	Mg(OH)₂+Ca(OH)₂ (水酸化ドロマイト)	粉末状	<u>硫酸系廃水の中和剤</u> 汚泥量の削減、スケールの抑制 (Fe, As, Mn, Cu, Zn, Ni,Al, Cd, Pb)	12~13
配合系 メタルクリア® (MC-1240, MC-2100, etc.)	メタルクリア-1000 or メタルクリア-2000 + 各種添加材	粉末状	<u>廃水、土壌、焼却灰、スラグ、石炭灰</u> 向けの 不溶化処理剤 (F, Pb, As, Se, B, Cr ⁶⁺ , Hg,Sb, Mo)	4~13

9 用途例

▲ 汚染土壌不溶化・・・on-site、低コスト

汚染土壌に不溶化剤 メタルクリアシリーズを混合し、土壌溶出基準を満足させる


汚染土壌中のフッ素、ヒ素、鉛等の不溶化が可能

▲ 排水処理···污染水浄化

- ・廃水中の重金属類の除去 (F,B,Pb,Mo,Sb,etc)
- ・従来の薬剤よりも 処理効果が高く、様々な元素を除去可能

短時間で重金属類の排水処理が可能

▲ 硫酸系廃水の中和・・汚泥発生量削減

汚泥処分費を削減することで排水処理全体のコストカットが可能

▲ <u>焼却灰、スラグ不溶化・・・リサイクル資材へ</u>

土壌溶出基準に適合させ、土木資材等にリサイクル

国土交通省の新技術情報提供システム「NETIS」登録済み

技術名称: 重金属処理剤「メタルクリア®」 登録No.: KT-160056-A

)実汚染土処理例 砒素

<u> 上素、鉛汚染土</u>

ヒ素、鉛汚染土に対し、メタルクリア®-1000を添加し、1or7日間密閉養生した。 養生後、環境庁告示第46号溶出試験を実施。

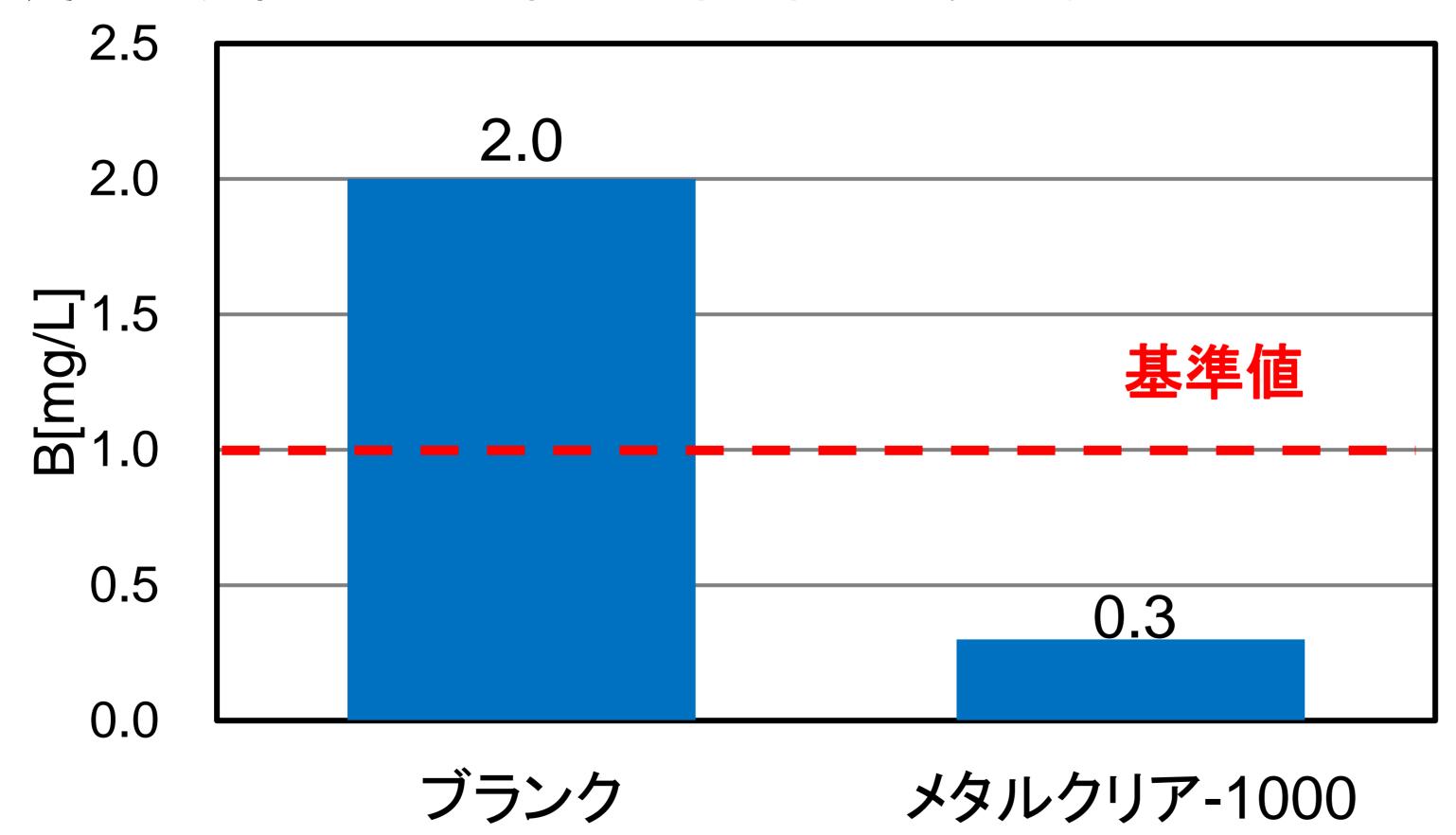
1日養生結果	汚染土ブランク	15[kg/t]	30[kg/t]	基準値
As[mg/L]	0.018	< 0.01	< 0.01	0.01
Pb[mg/L]	0.18	< 0.01	< 0.01	0.01
pH[-]	8.5	10	10.3	-

7日養生結果	汚染土ブランク	15[kg/t]	30[kg/t]	基準値
As[mg/L]	0.018	< 0.01	< 0.01	0.01
Pb[mg/L]	0.18	< 0.01	< 0.01	0.01
pH[-]	8.5	9.9	10.0	_

添加量15kg/tでヒ素、鉛共に環境基準値以下まで処理が可能

○実汚染土処理例 フッ素 ホウ素

フツ素汚染土


フッ素汚染土に対し、メタルクリア®-1000を添加し、7日間密閉養生した。 養生後、環境庁告示第46号溶出試験を実施。

	汚染土ブランク	25kg-材/t-土	50kg-材/t-土	100kg-材/t-土	基準値
F[mg/L]	1.2	0.72	0.45	0.30	0.8
pH[-]	9.0	9.7	10.1	10.4	_

添加量25kg/tでフッ素を環境基準値以下まで処理が可能

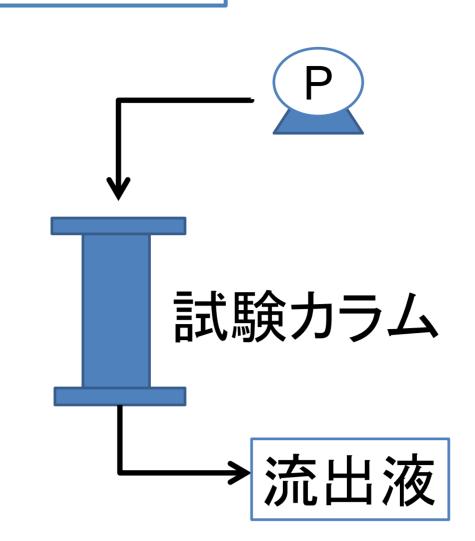
木ウ素汚染土

ホウ素汚染土に対し、メタルクリア® - 1000を30kg/t-土 添加し、1日間密閉養生した。 養生後、環境庁告示第46号溶出試験を実施。

	ブランク	メタルクリア- 1000	
溶出pH[-]	5.9	8.8	

溶出試験 B濃度分析結果

添加量30kg/t-土でホウ素を環境基準値以下まで処理が可能


● 重金属類カラム試験 メタルクリア® -1000

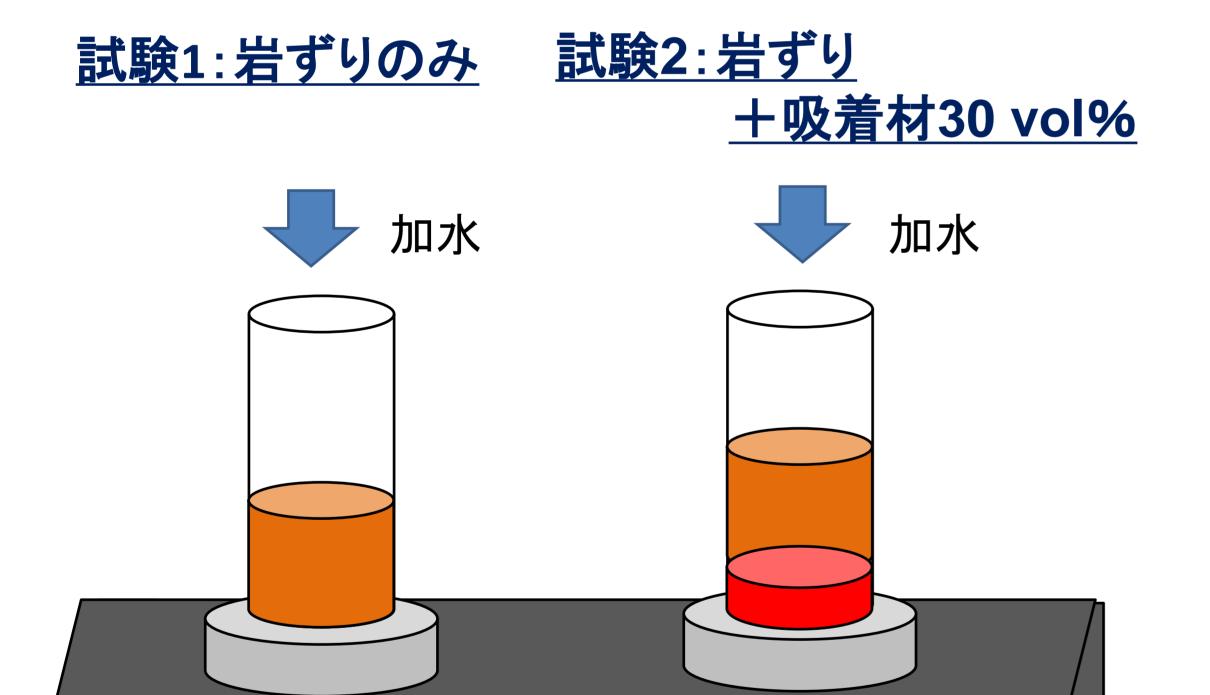
ヒ素(Ⅲ)、セレン(Ⅳ)、鉛、亜鉛、カドミウムを含有する模擬排水を作製。 これを、粒状メタルクリア-1000を充填した試験カラムに一定流量で通水した。 所定時間毎にカラム流出液を採取し、各種重金属類の濃度を分析した。

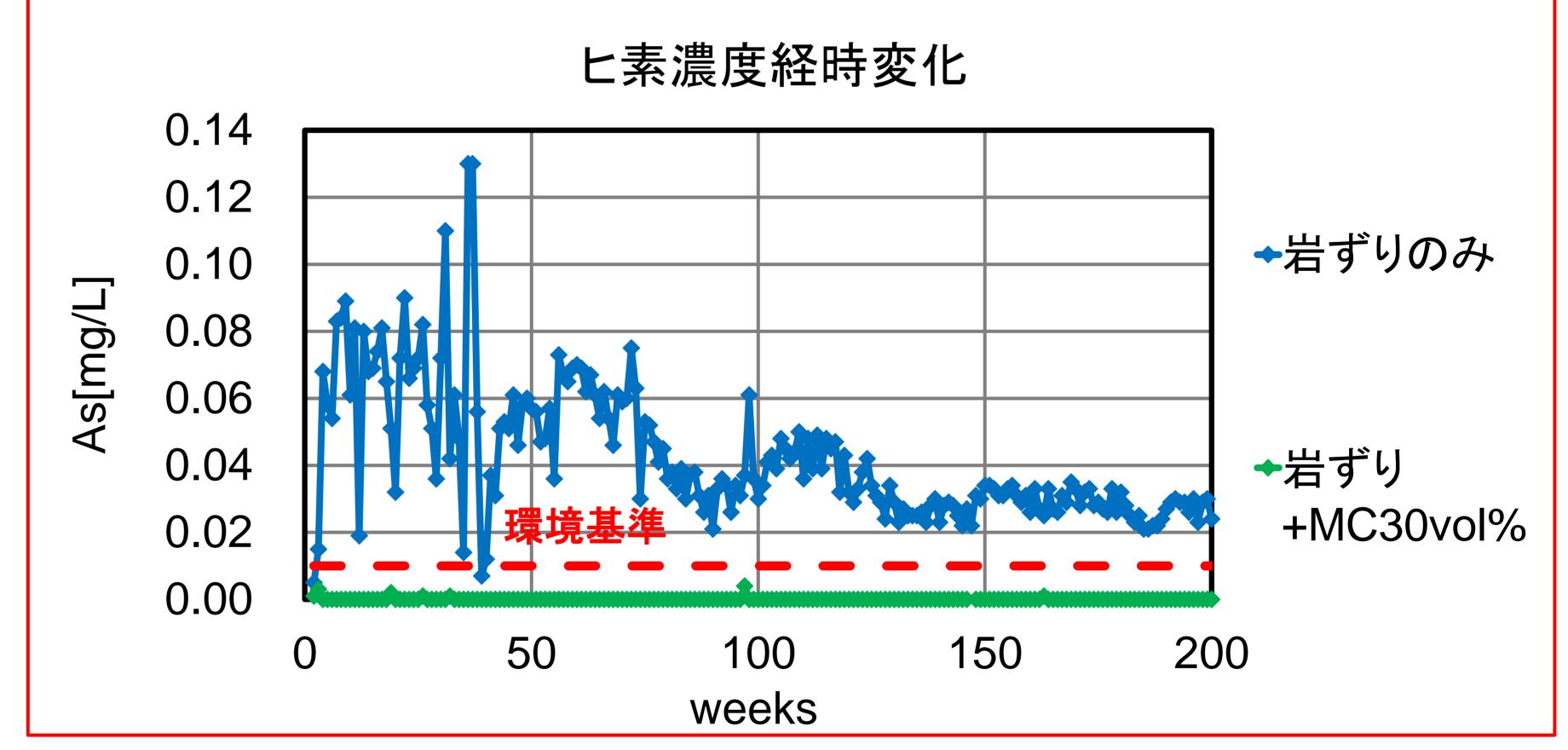
模擬排水: As,Se,Pb,Zn,Cd=0.5mg/L 初期pH=2~3

試験方法:SV(通水速度) 12、カラム上方から通水

充填剤粒度:0.5~1.0mm 50ml充填(比重1.1kg/L)

表流出液中の重金属濃度


[mg/L]	As	Se	Pb	Zn	Cd
模擬排水濃度	0.5	0.5	0.5	0.5	0.5
5分後	<0.01	<0.01	<0.01	<0.01	<0.01
30分後	<0.01	<0.01	<0.01	<0.01	<0.01
90分後	<0.01	<0.01	<0.01	<0.01	< 0.01


カラム通水することで、液中の重金属濃度を環境基準値以下まで処理が可能

〇 ヒ素吸着カラム試験 メタルクリア® -1000

ヒ素を溶出する実際の岩ずりを使ったカラム試験を実施した。

下図のように試験カラムの下部にメタルクリア-1000を敷き、その上にヒ素を含む岩ずりを充填した。 雨水を模して、1週間に1度カラムに加水し、溶出水中のヒ素濃度を分析した。

<u>メタルクリア-1000適用例</u>

吸着層工法

吸着資材と砂等を使い重金属吸着層を作り、 その上に汚染土壌や、岩ずり等を盛土します。 雨水等により溶出した有害物を吸着層で吸着し 系外への拡散を防止します。 覆土もしくは舗装 覆土 観測井戸 「汚染岩ずり」 吸着層 吸着層工法 模式図

ずりから溶出するヒ素を、メタルクリア®-1000で吸着することが可能